GLM国产大模型训练加速:性能最高提升3倍,显存节省1/3,低成本上手-每日简讯

来源: | 2023-02-06 14:24:48 |

作者|BBuf、谢子鹏、冯文

2017 年,Google 提出了 Transformer 架构,随后 BERT 、GPT、T5等预训练模型不断涌现,并在各项任务中都不断刷新 SOTA 纪录。去年,清华提出了 GLM 模型(https://github.com/THUDM/GLM),不同于上述预训练模型架构,它采用了一种自回归的空白填充方法, 在 NLP 领域三种主要的任务(自然语言理解、无条件生成、有条件生成)上都取得了不错的结果。  

很快,清华基于 GLM 架构又推出了 GLM-130B(https://keg.cs.tsinghua.edu.cn/glm-130b/zh/posts/glm-130b/),这是一个开源开放的双语(中文和英文)双向稠密模型,拥有 1300 亿参数,在语言理解、语言建模、翻译、Zero-Shot 等方面都更加出色。  


(资料图片)

预训练模型的背后离不开开源深度学习框架的助力。在此之前,GLM 的开源代码主要是由 PyTorch、DeepSpeed 以及 Apex 来实现,并且基于 DeepSpeed 提供的数据并行和模型并行技术训练了 GLM-Large(335M),GLM-515M(515M),GLM-10B(10B)等大模型,这在一定程度上降低了 GLM 预训练模型的使用门槛。

即便如此,对更广大范围的普通用户来说,训练 GLM 这样的模型依然令人头秃,同时,预训练模型的性能优化还有更大的提升空间。

为此,我们近期将原始的 GLM 项目移植到了使用 OneFlow 后端进行训练的 One-GLM 项目。得益于 OneFlow 和 PyTorch 无缝兼容性,我们快速且平滑地移植了 GLM,并成功跑通了预训练任务(训练 GLM-large)。

此外,由于 OneFlow 原生支持 DeepSpeed 和 Apex 的很多功能和优化技术,用户不再需要这些插件就可训练 GLM 等大模型。更重要的是,针对当前 OneFlow 移植的 GLM 模型,在简单调优后就能在性能以及显存占用上有大幅提升。

具体是怎么做到的?下文将进行揭晓。

One-GLM:https://github.com/Oneflow-Inc/one-glm

OneFlow:https://github.com/Oneflow-Inc/oneflow

1GLM-large 训练性能和显存的表现

首先先展示一下分别使用官方的 GLM 仓库以及 One-GLM 仓库训练 GLM-large 网络的性能和显存表现(数据并行技术),硬件环境为 A100 PCIE 40G,BatchSize 设置为 8。

可以看到,在 GLM-large 的训练任务中,相比原始的基于 PyTorch、DeepSpeed、Apex 的 GLM 实现,OneFlow的性能有 120% - 276% 的加速,并且显存占用降低了10% -30%(测试结果均可用 oneflow >=0.9.0 复现)

2

GLM 迁移,只需修改几行代码

由于 OneFlow 无缝兼容了 PyTorch 的生态,只需改动几行代码,就可以让用户轻松迁移 GLM 大模型到 One-GLM:  

将 import torch 替换为  import oneflow as torch

将 import torch.xx 替换为 import oneflow.xx

将 from apex.optimizers import FusedAdam as Adam 替换为 from oneflow.optim import Adam

将 from apex.normalization.fused_layer_norm import FusedLayerNorm as LayerNorm 替换为 from oneflow.nn import LayerNorm

注释掉 torch.distributed.ReduceOp,torch.distributed.new_group,,torch.distributed.TCPStore,torch.distributed.all_reduce 这些API,它们是 PyTorch DDP 所需要的,但 OneFlow 的数据并行是由内部的 SBP 和 Global Tensor 机制实现,并不需要这些 API。

其它许多模型的迁移更简单,比如在和 torchvision 对标的 flowvision 中,许多模型只需通过在 torchvision 模型文件中加入 import oneflow as torch 即可得到,让用户几乎没有额外成本。  

此外,OneFlow 还提供全局 “mock torch” 功能(https://docs.oneflow.org/master/cookies/oneflow_torch.html,在命令行运行 eval $(oneflow-mock-torch) 就可以让接下来运行的所有 Python 脚本里的 import torch 都自动指向 oneflow。  

3

两大调优手段

loss 计算部分的优化

在原始的 GLM 实现中,loss计算部分使用到了 mpu.vocab_parallel_cross_entropy 这个函数 (https://github.com/THUDM/GLM/blob/main/pretrain_glm.py#L263) 。  

通过分析这个函数,发现它实现了 sparse_softmax_cross_entropy 的功能,但在实现过程中,原始的 GLM 仓库使用了 PyTorch 的 autograd.Function 模块,并且使用了大量的小算子来拼接出 sparse_softmax_cross_entropy 整体的功能。而在 OneFlow 的算子库中,已经有 sparse_softmax_cross_entropy 这个算子对应的 CUDA 实现了,也就是 flow.sparse_softmax_cross_entropy 这个 API。

所以,我们将 GLM 对 sparse_softmax_cross_entropy 的 naive 实现替换为 flow.sparse_softmax_cross_entropy 这个 API,并进行了 loss 对齐实验。

结果如何?下图展示了基于 OneFlow 的 Graph 模式训练 GLM-large 模型前 1000 轮的 loss 对齐情况,并分别测试了 FP32 和 AMP 模式:

可以看到,将原始 GLM 的 naive sparse_softmax_cross_entropy 实现替换为 flow.sparse_softmax_cross_entropy 之后 loss 是完全对齐的,可以保证正确性。

相比原始的 GLM 的单卡性能,这个替换使得 One-GLM 的单卡性能有大幅提升,主要原因是 OneFlow 对 sparse_softmax_cross_entropy 算子做了极致的性能优化,并且减少了原始 GLM 中大量的碎算子拼凑带来的访存开销。此外,这样做也降低了 torch.autograd.Function 本身带来的一些系统开销。

CUDA Kernel Fuse

除上述优化外,GLM 模型本质上就是一个编解码的 Transformer 架构,所以我们将之前优化 GPT、BERT 的一些 Fuse Pattern 也带给了 One-GLM 模型。具体包含以下两个 Fuse Pattern :

fused_bias_add_gelu: 将 bias_add 和 gelu 算子融合在一起。

fused_bias_add_dropout:将 bias_add 和 dropout 算子融合在一起。

这两个 fuse 都可以显著改善计算的访存,并减少 Kernel Launch 带来的开销,由于 GLM 模型越大则层数就会越多,那么这种 Fuse Pattern 带来的的优势也会不断放大。

最终,在上述两方面的优化作用下,在 A100 PCIE 40G,batch_size = 8 环境中的训练 GLM-large 的任务时,单卡 FP32 模式的性能相比原始的 GLM 取得了 280%(FP32 模式) 和 307%( AMP 模式) 的训练加速。

4LiBai 也能轻松搞定 GLM 推理

当模型规模过于庞大,单个 GPU 设备无法容纳大规模模型参数时,便捷好用的分布式训练和推理需求就相继出现,业内也随之推出相应的工具。

基于 OneFlow 构建的 LiBai 模型库让分布式上手难度降到最低,用户不需要关注模型如何分配在不同的显卡设备,只需要修改几个配置数据就可以设置不同的分布式策略。当然,加速性能更是出众。

LiBai :https://github.com/Oneflow-Inc/libai

LiBai 相关介绍:大模型训练之难,难于上青天?预训练易用、效率超群的「李白」模型库来了!

GLM:https://github.com/Oneflow-Inc/libai/tree/glm_project/projects/GLM

用 LiBai 搭建的 GLM 可以便捷地实现model parallel + pipeline parallel推理, 很好地解决单卡放不下大规模模型的问题。

那么,用户如何利用大规模模型训练与推理仓库 LiBai 来构建 GLM 的分布式推理部分?下面用一个小例子解释一下。

分布式推理具有天然优势

要知道,模型的参数其实就是许多 tensor,也就是以矩阵的形式出现,大模型的参数也就是大矩阵,并行策略就是把大矩阵分为多个小矩阵,并分配到不同的显卡或不同的设备上,基础的 LinearLayer 在LiBai中的实现代码如下:

class Linear1D(nn.Module): def __init__(self, in_features, out_features, parallel="data", layer_idx=0, ...): super().__init__() if parallel == "col": weight_sbp = dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.split(0)]) elif parallel == "row": weight_sbp = dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.split(1)]) elif parallel == "data": weight_sbp = dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]) else: raise KeyError(f"{parallel} is not supported! Only support ("data", "row" and "col")") self.weight = flow.nn.Parameter( flow.empty( (out_features, in_features), dtype=flow.float32, placement=dist.get_layer_placement(layer_idx), # for pipeline parallelism placement sbp=weight_sbp, ) ) init_method(self.weight) ... def forward(self, x): ...

在这里,用户可选择去如何切分 Linear 层的矩阵,如何切分数据矩阵,而OneFlow 中的 SBP 控制竖着切、横着切以及其他拆分矩阵的方案(模型并行、数据并行),以及通过设置 Placement 来控制这个 LinearLayer 是放在第几张显卡上(流水并行)。

所以,根据 LiBai 中各种 layer 的设计原理以及基于 OneFlow 中 tensor 自带的 SBP 和 Placement 属性的天然优势,使得用户搭建的模型能够很简单地就实现数据并行、模型并行以及流水并行操作。

GLM 推理的 Demo 演示

这里为用户展示 LiBai 中 GLM 的单卡和便捷的多卡推理 Demo,模型可在 HuggingFace 上获取:https://huggingface.co/models?filter=glm

单卡 generate 任务,我们选择 glm-10b 模型:

python demo.py

# demo.pyimport oneflow as flowfrom projects.GLM.tokenizer.glm_tokenizer import GLMGPT2Tokenizerfrom libai.utils import distributed as distfrom projects.GLM.configs.glm_inference import cfgfrom projects.GLM.modeling_glm import GLMForConditionalGenerationfrom projects.GLM.utils.glm_loader import GLMLoaderHuggerFacefrom omegaconf import DictConfigtokenizer = GLMGPT2Tokenizer.from_pretrained("/data/home/glm-10b")input_ids = tokenizer.encode( [ "Ng is an adjunct professor at [MASK] (formerly associate professor and Director of its Stanford AI Lab or SAIL ). Also a pioneer in online education, Ng co-founded Coursera and deeplearning.ai." ], return_tensors="of",)inputs = {"input_ids": input_ids, "attention_mask": flow.ones(input_ids.size())}inputs = tokenizer.build_inputs_for_generation(inputs, max_gen_length=512)sbp = dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast])placement = dist.get_layer_placement(0)dist.set_device_type("cpu")loader = GLMLoaderHuggerFace(GLMForConditionalGeneration, cfg, "/path/to/glm-10b")model = loader.load()model = model.half().cuda()dist.set_device_type("cuda")outputs = model.generate( inputs=inputs["input_ids"].to_global(sbp=sbp, placement=placement), position_ids=inputs["position_ids"].to_global(sbp=sbp, placement=placement), generation_attention_mask=inputs["generation_attention_mask"].to_global(sbp=sbp, placement=placement).half(), max_length=512)res = tokenizer.decode(outputs[0])print(res)>>> [CLS] Ng is an adjunct professor at [MASK] (formerly associate professor and Director of its Stanford AI Lab or SAIL ). Also a pioneer in online education, Ng co-founded Coursera and deeplearning.ai.<|endoftext|> <|startofpiece|> Stanford University and a co-founder of <|endofpiece|>

4卡 model parallel+pipeline parallel generate 任务,选择 glm-10b 模型:

python3 -m oneflow.distributed.launch --nproc_per_node 4 demo.py

# demo.pyimport oneflow as flowfrom projects.GLM.tokenizer.glm_tokenizer import GLMGPT2Tokenizerfrom libai.utils import distributed as distfrom projects.GLM.configs.glm_inference import cfgfrom projects.GLM.modeling_glm import GLMForConditionalGenerationfrom projects.GLM.utils.glm_loader import GLMLoaderHuggerFacefrom omegaconf import DictConfig# 只需简单配置并行方案parallel_config = DictConfig( dict( data_parallel_size=1, tensor_parallel_size=2, pipeline_parallel_size=2, pipeline_num_layers=2 * 24 ))dist.setup_dist_util(parallel_config)tokenizer = GLMGPT2Tokenizer.from_pretrained("/data/home/glm-10b")input_ids = tokenizer.encode( [ "Ng is an adjunct professor at [MASK] (formerly associate professor and Director of its Stanford AI Lab or SAIL ). Also a pioneer in online education, Ng co-founded Coursera and deeplearning.ai." ], return_tensors="of",)inputs = {"input_ids": input_ids, "attention_mask": flow.ones(input_ids.size())}inputs = tokenizer.build_inputs_for_generation(inputs, max_gen_length=512)sbp = dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast])placement = dist.get_layer_placement(0)loader = GLMLoaderHuggerFace(GLMForConditionalGeneration, cfg, "/path/to/glm-10b")model = loader.load()outputs = model.generate( inputs=inputs["input_ids"].to_global(sbp=sbp, placement=placement), position_ids=inputs["position_ids"].to_global(sbp=sbp, placement=placement), generation_attention_mask=inputs["generation_attention_mask"].to_global(sbp=sbp, placement=placement), max_length=512)res = tokenizer.decode(outputs[0])if dist.is_main_process(): print(res)>>> [CLS] Ng is an adjunct professor at [MASK] (formerly associate professor and Director of its Stanford AI Lab or SAIL ). Also a pioneer in online education, Ng co-founded Coursera and deeplearning.ai.<|endoftext|> <|startofpiece|> Stanford University and a co-founder of <|endofpiece|>

使用 One- GLM 训练的模型进行推理

LiBai对于OneFlow的模型加载同样方便,如果你希望使用one-glm训练后的模型进行推理,只需简单的将上述demo中的 GLMLoaderHuggerFace 替换为 GLMLoaderLiBai。  

5

结语

基于 OneFlow 来移植 GLM 大模型非常简单,相比于原始版本 PyTorch GLM  训练 GLM-large 模型,OneFlow 能大幅提升性能和节省显存。

此外,通过使用 GLM-10B 这个百亿级大模型做推理,表明基于 OneFlow 的 LiBai 来做大模型推理可以开箱即用,并实现更高的推理速度,如果你想配置不同的并行方式来推理大模型,只需要简单配置文件的几个参数即可。

未来,OneFlow团队将探索使用 OneFlow 训练更大的 GLM-130B 千亿模型的可行性,相信基于 OneFlow 可以更快地训练 GLM-130B 千亿级别模型,加速国产大模型训练和推理任务。欢迎Star、试用One-GLM:

One-GLM:https://github.com/Oneflow-Inc/one-glm

OneFlow:https://github.com/Oneflow-Inc/oneflow

其他人都在看

35张图,直观理解Stable Diffusion

2023年AI十大展望:GPT-4领衔大模型变革

李白:你的模型权重很不错,可惜被我没收了

OpenAI掌门Sam Altman:AI下一个发展阶段

比快更快,开源Stable Diffusion刷新作图速度

OneEmbedding:单卡训练TB级推荐模型不是梦

“零”代码改动,静态编译让太乙Stable Diffusion推理速度翻倍

点击“阅读原文”,欢迎Star、试用OneFlow最新版本:https://github.com/Oneflow-Inc/oneflow/https://github.com/Oneflow-Inc/oneflow/